LightSquared Impact to Aviation

Presented to: House Committee on Science, Space and Technology

By: JC Johns, Director

FAA Navigation Services

Date: July 26, 2011

Federal Aviation Administration

Background

- assessed the impact of LightSquared deployment per the request of the Space-Based Position, Federal Aviation Administration (FAA) has Navigation and Timing (PNT) Executive Committee
- This assessment is based on the following studies of LightSquared:
- LightSquared Technical Working Group (TWG) Report
- Radio Technical Commission for Aeronautics (RTCA) Report
- National PNT Engineering Forum (NPEF) Report

LightSquared's June 30 Recommendations

- These recommendations were filed by LightSquared in parallel with the TWG report and represented only LightSquared position
- Proposed using lower 10Mhz channel below their "authorized power" and a "standstill" in use of the upper 10 MHz channel
- Also identified need to explore all options for use of the "full levels" to provide high-quality LTE broadband service complement" of terrestrial frequencies at "appropriate power
- In congressional testimony, LightSquared clarified its need to be "on a vector to use upper 10MHz channel within 2-3 years"
- LightSquared's recommendation would enable operations consistent with their original plan by 2014

FAA Comments on LightSquared's Recommendations

- Reduced power is same level as previously planned
- Lower channel operations at "reduced power" interfere with certified GPS receivers
- aviation fleet 10 years needed to design, develop, certify and modify civil
- GPS-enabled operational, economic and public safety benefits lost until aircraft are reequipped
- ground-based navigational aids Aviation would return to full dependency on antiquated
- Billions of dollars in FAA and User investments lost
- by 10 years resulting in lost benefits and increased expense Delays Next Generation Air Transportation System (NextGen)

NextGen Impact Areas

- Loss of existing GPS Efficiency Benefits
- Provide baseline for NextGen enhancements
- Loss of Current GPS safety benefits
- Safety Issues Mitigated by GPS
- FAA Estimate of Potential Averted Fatalities
- Loss of NextGen Benefits
- Aircraft Retrofit Costs
- **FAA and Aviation Community Lost Investments**
- International Implications
- NextGen Impact Summary and Risks to FAA Mission

Benefits Loss of existing GPS Efficiency

- **Enabling Performance Based Navigation today**
- GNSS is available as a primary method of navigation
- Providing efficiency enhancements for over 35,000 instrument flights each day
- Widespread use of Area Navigation to provide direct routes and improve flexibility of operations which reduce delays
- Precise navigation for thousands of instrument approaches provide increased access to airfields in instrument conditions
- for a ten-year estimate of \$2 billion FAA estimates GPS provides \$200M in annual efficiency benefits

Safety Issues Mitigated by GPS

- Three major aviation safety risks are mitigated though the use of
- Approach and Landing accidents
- During the 1990's as many as 9 approach and landing accidents (4 of which were fatal)
- Since 1999 there have only been 2 U.S. carriers with such accidents in the U.S with one of those aircraft not equipped with GPS
- As General Aviation (GA) has made GPS "Glass Cockpits" standardized in new aircraft, fatal approaches and landings at night have been reduced by
- Controlled Flight into Terrain (CFIT)
- Most lethal of all accidents
- On Board Terrain alerts were unstable prior to GPS
- Enhance Ground Proximity Warning Systems (EGPWS) combine GPS and other technologies to provide look-ahead terrain information to the flight crew
- GA usage of GPS has provided a 44% reduction in CFIT over the past 5 years
- Runway Incursions
- Volpe National Transportation Systems Center concluded a mix of airport surface moving maps (which depends on GPS) could prevent 1/3 of all runway

Fatalities FAA Estimate of Potential Averted

Type Operations	Reduced Fatalities over 10 Years	Nominal 10-year Benefit (\$ billions)
Air Carrier	64	0.4
General Aviation/Part 135	730	4.4
Total	794	4.9

\$ 6.2 on per like
(no equipment)

- traffic increase, aircraft size increase and flying with higher load factors not being These figures are conservative for air transport operation due to commercial included
- property loss This does not include assumptions concerning serious injury, minor injury or

Provided by GPS Loss of NextGen Benefits

- 64 million tons 2018; and by 2030, grow to \$123 billion and reduce CO₂ emissions by Cumulative benefits of NextGen estimated to be \$23 billion through
- Majority of NextGen benefits would be jeopardized
- Lost benefits include increased safety, FAA cost savings, reduced CO₂ emissions, more efficient flight paths, delay savings
- FAA estimates \$59 billion loss due to NextGen technology and procedure benefit delays
- Implementation delays would result in the production of an additional 30 million tons of CO₂
- investments with additional associated development costs Additionally, FAA would be forced to replan \$17 billion in NextGen

Aircraft Retrofit Costs

Unplanned Retrofits include:

- transport aircraft 5,800 to 7,250 passenger, cargo and regional U.S. operated
- Including 2,800 to 4,000 international operators aircraft operated from 105 countries
- 61,000 IFR approved general aviation and air taxi aircraft
- Majority of 310,000 pilots without instrument ratings use noncertified GPS units for situational awareness
- General purpose and aviation special purpose VFR GPS units would be rendered operationally useless
- FAA estimates \$6 billion for unplanned aircraft retrofit costs
- 10 year retrofit timeline is assessed as medium to high risk

Summary of Estimated Impacts

- aviation community cost of at least \$72 billion*, stemming from: Based on input from RTCA as well as National Space-Based proposed LightSquared deployment would result in an estimated Position Navigation and Timing Systems Engineering Forum,
- \$ 2 billion loss of existing GPS efficiency benefits
- 5 billion loss of existing GPS safety benefits
- 59 billion due to delayed NextGen benefits
- \$ 6 billion in aircraft retrofit costs
- Additionally, LightSquared deployment would result in
- an additional 30 million tons of ${
 m CO}_2$ and
- FAA would be forced to replan \$17 billion in NextGen investments, with associated additional development costs
- * Based on a 10 year replanning and aircraft retro-fit schedule

Costs Not Included in the Estimate FAA and Aviation Community Sunk

- U.S. taxpayers have invested \$3B in FAA implementation of GPS and NextGen though FY11
- Aviation industry investment in GPS equipment is estimated to be \$3 to 4 billion
- government public utility aircraft thousands of DoD, Federal, State and Local Estimate does not included equipage for
- investment loss of \$6 to 7 billion Total FAA and civil aviation community

International Implications

- President's 2010 National Space Policy of the United States of America states that the U.S. must maintain its navigation satellite systems leadership in the service, provision and use of global
- aviation LightSquared proposal could affect U.S. leadership in
- Air carriers and civil users may lose confidence in GPS in spite of previous Presidential commitments to ICAO
- be damaged International market for U.S. satellite technology could
- Increasing demand for non-U.S. systems (e.g., Russia's GLONASS system

FAA High-Precision and GPS Timing Equities

- at the lower channel would also preclude the following critical capabilities that rely on high precision and GPS timing: Based upon existing information, LightSquared's operations
- Airfield and Flight Procedure surveys
- Flight test tracking
- Space Weather monitoring
- GPS Timing for computing resources and numerous mission critical systems including:
- Terminal, Enroute and Oceanic automation systems
- Surveillance systems
- Voice communications and recoding systems
- Maintenance support systems

FAA Conclusions

- study civil aircraft receivers without definition of FAA cannot conclude that operations using just the LightSquared's end-state deployment and further lower portion of the spectrum are compatible with
- and lower channels by 2014) would result in an estimated aviation community cost impact of at least \$72 billion and delay NextGen implementation Proposed LightSquared deployment (both upper by approximately 10 years
- safest, most efficient aerospace system in the Proposed LightSquared operations would severely world impact the efficiency and modernization of the